Redundancy as a Graph-Based Index of Frequency Specific MEG Functional Connectivity

نویسندگان

  • Claudia di Lanzo
  • Laura Marzetti
  • Filippo Zappasodi
  • Fabrizio de Vico Fallani
  • Vittorio Pizzella
چکیده

We used a recently proposed graph index to investigate connectivity redundancy in resting state MEG recordings. Usually, brain network analyses consider indexes linked to the shortest paths between cerebral regions. However, important information might be lost about alternative trails by neglecting longer pathways. We measured the redundancy of the connectivity by considering the multiple paths at the global level (i.e., scalar redundancy), across different path lengths (i.e., vector redundancy), and between node pairs (i.e., matrix redundancy). We applied this approach to a robust frequency domain functional connectivity measure, the corrected imaginary part of coherence. The redundancy in the MEG networks, for each frequency band, was significantly (P < 0.05) higher than in the random graphs, thus, confirming a natural tendency of the brain to present multiple interaction pathways between different specialized areas. Notably, this difference was more evident and localized among the channels covering the parietooccipital areas in the alpha range of MEG oscillations (7.5-13 Hz), as expected in the resting state conditions. Interestingly enough, the results obtained with the redundancy indexes were poorly correlated with those obtained using shortest paths only, and more sensitive with respect to those obtained by considering walk-based indexes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computer-Aided Tinnitus Detection based on Brain Network Analysis of EEG Functional Connectivity

Background: Tinnitus known as a central nervous system disorder is correlated with specific oscillatory activities within auditory and non-auditory brain areas. Several studies in the past few years have revealed that in the most tinnitus cases, the response pattern of neurons in auditory system is changed due to auditory deafferentation, which leads to variation and disruption of the brain net...

متن کامل

Tinnitus Identification based on Brain Network Analysis of EEG Functional Connectivity

Introduction: Tinnitus known as a central nervous system disorder is correlated with specific oscillatory activities within auditory and non-auditory brain areas. Several studies in the past few years have revealed that in the most tinnitus cases, the response pattern of neurons in auditory system is changed due to auditory deafferentation, which leads to variation of the brain...

متن کامل

Frequency-dependent functional connectivity within resting-state networks: An atlas-based MEG beamformer solution

The brain consists of functional units with more-or-less specific information processing capabilities, yet cognitive functions require the co-ordinated activity of these spatially separated units. Magnetoencephalography (MEG) has the temporal resolution to capture these frequency-dependent interactions, although, due to volume conduction and field spread, spurious estimates may be obtained when...

متن کامل

Identification of mild cognitive impairment disease using brain functional connectivity and graph analysis in fMRI data

Background: Early diagnosis of patients in the early stages of Alzheimer's, known as mild cognitive impairment, is of great importance in the treatment of this disease. If a patient can be diagnosed at this stage, it is possible to treat or delay Alzheimer's disease. Resting-state functional magnetic resonance imaging (fMRI) is very common in the process of diagnosing Alzheimer's disease. In th...

متن کامل

On the distance based indices of H-phenylenic nanotorus

Let G be a connected simple (molecular) graph. The distance d(u, v) between two vertices u and v of G is equal to the length of a shortest path that connects u and v. In this paper we compute some distance based topological indices of H-Phenylenic nanotorus. At first we obtain an exact formula for the Wiener index. As application we calculate the Schultz index and modified Schultz index of this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012